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Abstract: Idiopathic generalized epilepsy (IGE) has been linked with disrupted intra-network connec-
tivity of multiple resting-state networks (RSNs); however, whether impairment is present in inter-
network interactions between RSNs, remains largely unclear. Here, 50 patients with IGE characterized
by generalized tonic–clonic seizures (GTCS) and 50 demographically matched healthy controls under-
went resting-state fMRI scans. A dynamic method was implemented to investigate functional network
connectivity (FNC) in patients with IGE-GTCS. Specifically, independent component analysis was first
carried out to extract RSNs, and then sliding window correlation approach was employed to obtain
dynamic FNC patterns. Finally, k-mean clustering was performed to characterize six discrete functional
connectivity states, and state analysis was conducted to explore the potential alterations in FNC and
other dynamic metrics. Our results revealed that state-specific FNC disruptions were observed in IGE-
GTCS and the majority of aberrant functional connectivity manifested itself in default mode network.
In addition, temporal metrics derived from state transition vectors were altered in patients including
the total number of transitions across states and the mean dwell time, the fraction of time spent and
the number of subjects in specific FNC state. Furthermore, the alterations were significantly correlated
with disease duration and seizure frequency. It was also found that dynamic FNC could distinguish
patients with IGE-GTCS from controls with an accuracy of 77.91% (P< 0.001). Taken together, this
study not only provided novel insights into the pathophysiological mechanisms of IGE-GTCS but also
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suggested that the dynamic FNC analysis was a promising avenue to deepen our understanding of
this disease. Hum Brain Mapp 00:000–000, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Idiopathic generalized epilepsy (IGE), characterized by
the widespread generalized spike-and-waves or polyspike-
waves and undetectable focal anatomical brain abnormali-
ties, encompasses a group of epileptic disorders [Sullivan
and Dlugos, 2004]. Generalized tonic–clonic seizure
(GTCS) is the most common subtype of IGE, and is the
one that needs the most medical attention [Engel, 2001].
Patients with IGE-GTCS typically have the seizure symp-
toms of rigid stiffening of the limbs, violent muscle con-
tractions of entire body, and loss of consciousness which
may cause severe injury even death [Jallon and Latour,
2005; Marini et al., 2003]. Meanwhile, there are cognitive
impairments between seizures, including memory, atten-
tion, and executive dysfunctions [Hommet et al., 2006].
Although considerable efforts have been made in the past
decade, the pathophysiological mechanism of IGE-GTCS
remains largely unclear.

Recent advance in neuroimaging techniques allows for
exploration of the human brain in an efficient and non-
invasive way. Resting-state fMRI has been suggested as a
promising approach to study intrinsic functional proper-
ties [Barkhof et al., 2014; Guo et al., 2012; Kong et al., 2016;
Li et al., 2014b; Liu et al., 2013]. Functional impairments in
IGE-GTCS are thought to be associated with abnormal
multiple interconnected brain systems rather than isolated
areas. For instance, Song et al. [2011] found significantly
decreased functional connectivity (FC) within the default
mode network (DMN) of 14 IGE-GTCS patients compared
with 29 healthy controls, suggesting that abnormal connec-
tivity in the DMN might be the neural substrate of the
impaired consciousness. In a dataset of 16 IGE-GTCS
patients and 16 healthy subjects, Wang et al. [2011]
observed disrupted FC in several resting-state networks
(RSNs) such as the visual, auditory and dorsal attention
networks, which might underlie the impairment of corre-
sponding cognitive functions in the patients. However,
these studies focused on the FC within single functional
network with a relatively small sample size, and none of
them examined between-network interactions in IGE-
GTCS. The human brain is a complex, interconnected sys-
tem with an optimal balance between functional speciali-
zation and integration. Exploration of the intra-network
connectivity can enhance our understanding of the func-
tional segregation, while investigation on the inter-
network connectivity can advance our understanding of
the functional integration of the brain. Therefore, examina-
tion of the FC between RSNs, namely functional network

connectivity (FNC), may provide novel insights into the
pathophysiological mechanism of IGE-GTCS.

Traditional FC analysis measures the correlations of sig-
nals within 5 minutes or more, with an assumption that
the FC remains constant during the observation period
[Biswal et al., 1995; Fox et al., 2005; Wang et al., 2016b].
Based on this hypothesis, one can obtain a static pattern of
brain activity coherence, which is essentially an average
connectivity over the whole period of time. Although static
FC is widely used in previous literatures [Greicius, 2008;
Liu et al., 2015a; Van den Heuvel and Hulshoff Pol, 2010],
it may not be enough to fully characterize the human
brain. The time-dependent and dynamic nature of brain
activity reinforces the expectation that FC calculated on
fMRI varies over time [Rabinovich et al., 2012; Sporns,
2011; Von der Malsburg et al., 2010]. Recently, a growing
body of research has investigated the dynamic FC in
healthy subjects and patients with neuropsychiatric dis-
eases. For example, Allen and colleagues [Allen et al.,
2014] examined resting-state FC dynamics in healthy
young adults, and in a follow-up study, they found
dynamic FC alterations in schizophrenia [Damaraju et al.,
2014]. Shen et al. [2016] revealed the influence of driving
behavior on the temporally dynamic properties of resting-
sate FC. Liao et al. [2014] observed a complex transition of
functional network topology as well as dynamic changes
of connectivity between the thalamus and the DMN in
absence epilepsy. These collective findings imply that
dynamic FC is a promising avenue for clinical neuroimag-
ing and can enrich our knowledge of functional organiza-
tion of human brain [Calhoun et al., 2014; Kopell et al.,
2014; Kucyi and Davis, 2015; Zhang et al., 2016].

Inspired by previous work, we compared the dynamic
FNC in a relatively large sample of 50 IGE-GTCS patients
with that in 50 age-, gender-, and handedness-matched
healthy controls. Briefly, group independent component
analysis (ICA) was first used to extract RSNs, and dynam-
ic FNC matrices were then created using sliding window
correlation approach. Subsequently, K-means algorithm
was employed to cluster these matrices into different
dynamic states, and state analysis was finally carried out
to compare the dynamic FNC and temporal metrics
between the two groups. Specifically, the optimal window
size in the sliding window method was determined by a
multivariate pattern analysis (MVPA). The aim of the cur-
rent study was mainly twofold: we sought to explore
whether IGE-GTCS had changed dynamic properties and,
if so, whether those disease-related alterations were associ-
ated with clinical variables. Rather than focusing on
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networks of interest which was commonly adopted in pre-
vious IGE-GTCS studies, in this work, we examined the
whole-brain FC at the network level. This exploration was
helpful in detecting potentially changed network interac-
tions in IGE-GTCS, and may provide novel insights for
extending the current knowledge of the neuropathological
underpinnings of this disease.

MATERIALS AND METHODS

Participants

The present study was approved by the Ethics Commit-
tee of Jinling Hospital, Nanjing University School of Medi-
cine. Written informed consent was obtained from each
subject before any study procedure was initiated. Fifty
patients with IGE-GTCS were recruited and they were all
diagnosed as IGE with only GTCS based on the Interna-
tional League against Epilepsy (ILAE) classification: (1)
presence of typical clinical symptoms of GTCS, including
tic of limbs followed by a clonic phase of rhythmic jerking
of the extremities, loss of consciousness during seizures
and no partial seizures; (2) presence of generalized spike-
and-wave or poly-spike-wave discharges in their interictal
scalp electroencephalogram (EEG); (3) no focal abnormali-
ty in the structural MRI; and (4) no obvious history of eti-
ology. In the current study, the patient’s cohort included
11 drug-naive patients who were newly diagnosed as epi-
lepsy, and the remaining 39 patients with IGE-GTCS were
treated with antiepileptic drugs, including valproate, phe-
nytoin, carbamazepine, lamotrigine, and topiramate. In
addition, 50 age-, gender-, handedness-matched healthy
controls were recruited. They were interviewed to confirm
that none of them had a history of neurological or psychi-
atric disorder and no gross abnormalities. All the patients
and controls were right-handed according to the criterion
of Chinese revised-version of Edinburgh Handedness
Inventory [Oldfield, 1971].

Data Acquisition

Scanning took place on a Siemens 3T Trio scanner (Sie-
mens Medical Systems, Erlangen, Germany) with an eight-
channel phased array head coil at Jinling Hospital, Nan-
jing, China. Foam padding was used to minimize head
movement. During data acquisition, the participants were
instructed to hold still, close eyes, relax minds and not to
fall asleep (confirmed by all participants immediately after
the experiment). Resting-state fMRI were acquired by a
single-shot, gradient-recalled echo planar imaging (EPI)
sequence. Sequence parameters were as follows: repetition
time 5 2,000 ms, echo time 5 30 ms, slice thickness 5

4 mm, slice gap 5 0.4 mm, field of view 5 24 cm, flip
angle 5 908, in-plane matrix 5 64 3 64, voxel size 5 3.75 3

3.75 3 4 mm3. For each subject, the brain volume com-
prised 30 axial slices, and each functional run contained

250 image volumes. During fMRI scan, no patient had
seizure.

Overview of Methodology

An overview of the framework is summarized in Figure
1. First, resting-state fMRI data were preprocessed using
SPM software (www.fil.ion.ucl.ac.uk/spm). Second, ICA
was conducted at the group level to decompose the data
into 34 independent components and then 21 RSNs were
identified. Third, the optimal window length for calculat-
ing dynamic FNC was determined using an MVPA
approach. Fourth, dynamic FNC matrices were calculated
for each subject. Finally, clustering and state analyses were
conducted to investigate the dynamic FNC changes in
IGE-GTCS.

Data Preprocessing

Functional images were preprocessed using the SPM8
software package. After removing the first 10 images to
allow the signal to reach equilibrium, fMRI data were cor-
rected for the temporal differences between slices and
head motion. Next, the corrected functional data were spa-
tially normalized to the Montreal Neurological Institute
EPI template in SPM8 using an optimum 12-parameter
affine transformation and non-linear deformations and
resampled to 3 3 3 3 3 mm3. Finally, the normalized
images were smoothed with an 8-mm full-width half max-
imum isotropic Gaussian kernel.

ICA

Group spatial ICA was adopted to decompose all pre-
processed data into independent components (ICs) using
GIFT software (version 2.0a [Calhoun et al., 2001]) with
three steps: dimensionality reduction, ICs estimation, and
back reconstruction. Specifically, a two-step principal com-
ponent analysis was applied to reduce the data into 34
components, and the component number was determined
by the minimum description length criterion [Li et al.,
2007]. Subsequently, the Infomax algorithm [Bell and Sej-
nowski, 1995] was utilized in ICs estimation, which was
run 100 times using the ICASSO algorithm to identify the
most stable and reliable components [Himberg et al.,
2004]. Next, a dual-regression method was employed to
back-reconstruct the individual subject’s components.
After back-reconstruction, the ICs’ time courses and spatial
maps for all participants were obtained, and the subject-
specific maps were converted to Z-scores (subtracting the
mean and then dividing the result by the standard devia-
tion). Here, all ICs were evaluated based on the group IC
maps according to the following criteria [Beckmann et al.,
2005; Cohn et al., 2015; Cordes et al., 2000; Damoiseaux
et al., 2006; Zuo et al., 2010]: the RSNs exhibited peak acti-
vations in gray matter, had time courses dominated by
low-frequency fluctuations (based on a frequency analysis
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of the spectra of the estimated ICs), and showed low spa-
tial overlap with known white matter structures, vascular,
ventricles, motion and susceptibility artifacts. Finally, 21
functionally relevant RSNs were identified for the subse-
quent analyses.

Head Motion Correction

Recent studies have demonstrated that head motion has
a substantial impact on resting-state FC [Power et al.,
2014, 2015]. Although ICA can separate motion artifact
from the selected RSNs [Kochiyama et al., 2005; Liao et al.,
2006], we still used the following five steps to further
minimize the effects of head motion. First, in the data pre-
processing, we performed three-dimensional motion cor-
rection by aligning each functional volume to the mean
image of all volumes, and excluded subjects whose head
motion exceeded a translation of 2 mm or an angular rota-
tion of 2 degrees in any direction. Second, we calculated
the maximum motion between two successive images and
discarded subjects with displacement more than 1 mm.

Third, several summary metrics (mean, maximum, root
mean square and mean frame-wise displacement) were
estimated from the head motion profiles (3 translations
and 3 rotations) in the remaining subjects. Statistical com-
parisons revealed that all these measures were matched
between the two groups (all Ps> 0.05). Fourth, we
regressed out head motion from the time courses of RSNs
using Friston’s 24-parameter model, as previously sug-
gested [Friston et al., 1996; Yan et al., 2013]. Finally, an
outlier detection strategy was utilized to find the affected
time points using 3DDESPIKE (http://afni.nimh.nih.gov/
afni) and the outliers were replaced with the best estimate
using a third-order spline fit to the clean portions of the
time courses [Allen et al., 2014].

Dynamic FNC Computation

Low frequency fluctuations of the resting-state fMRI sig-
nal were of physiological significance and thought to
reflect spontaneous neural activity [Biswal et al., 1995; Lu
et al., 2007]. Therefore, before dynamic FNC computation,

Figure 1.

An overview of analysis steps of dynamic functional network

connectivity. The analysis includes the following steps: (1)

resting-state fMRI data were preprocessed; (2) ICA was con-

ducted and 21 RSNs were identified; (3) the optimal window

length for calculating dynamic FNC was determined by an MVPA

approach; (4) dynamic FNC matrices were calculated in all

different sliding windows for each subject; (5) clustering and

state analyses were conducted to investigate the dynamic FNC

changes. Abbreviations: FNC, functional network connectivity;

ICA, independent component analysis; RSN, resting-state net-

work; SVM, support vector machine. [Color figure can be

viewed at wileyonlinelibrary.com]
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the time courses of RSNs were temporally bandpass fil-
tered (0.01–0.08 Hz) to reduce the effects of low-frequency
drift and high-frequency physiological noise [Liu et al.,
2012c].

The dynamic FNC was computed using a sliding win-
dow correlation approach. Since there was currently no
formal consensus regarding the window length, we select-
ed a range of length (10–75 TRs, step 5 1 TR) according to
former studies [Hutchison and Morton, 2015; Leonardi
and Van De Ville, 2015; Liao et al., 2014; Zalesky and
Breakspear, 2015]. The optimal window length (55 TRs)
was determined by using MVPA (see details in the IGE-

GTCS Classification section below) and the window was
shifted with a step size of 1 TR (i.e., 2 s) each time, result-
ing in 186 windows in total. In each window, the time
courses of each pair of the 21 RSNs were used to calculate
FNC (Pearson’s correlation coefficient) and a 21 3 21 cor-
relation matrix was obtained. A Fisher’s r-to-z transforma-
tion [Cohen et al., 2013; Liu et al., 2015b] was then applied
to all FNC matrices to improve the normality of the corre-
lation distribution as

z5
1

2
ln 11rð Þ2ln 12rð Þ½ � (1)

where r is the Pearson correlation coefficient and z is
approximately a normal distribution.

IGE-GTCS Classification

For a given window length, we calculated temporal var-
iabilities of connections between RSNs over time and con-
sidered them as features for classifying IGE-GTCS from
healthy controls. The variance of the time series of correla-
tion coefficient was computed to assess temporal variabili-
ty according to the equation:

VarDFNC i;jð Þ5
1

N21

XN

n51

zn i; jð Þ2 1

N

XN

n51

zn i; jð Þ
 !2

(2)

where zn i; jð Þ was the FNC strength between RSN i and
RSN j within a given sliding window n, and N was the
total number of windows. Thus, for each subject, a 21 3

21 variance matrix was finally obtained, resulting in (21 3

(21 2 1))/2 5 210 classification features.
Given that some features are non-informative or redun-

dant for classification, feature selection was adopted to
improve classification performance and to speed up

Figure 2.

Schematic overview of the nested 10-fold cross-validation classification framework. The inner

cross-validation was used to determine the optimal number of features and the outer cross-

validation was employed to estimate the classification performance. The whole nested cross-

validation process was repeated 10 times, and the final result was the average accuracy of 10

repetitions of 10-fold cross-validation.
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computation. As did in previous studies [Cui et al., 2016;
Zeng et al., 2012], a univariate feature-filtering method
was employed here. Specifically, two-sample two-tailed t-
tests were performed on the features in the training set to
determine the features that showed differences between
the IGE-GTCS and control groups, and then the features
were ranked according to their P values (in the ascending
order). The first M ranking features, which corresponded
to the M-smallest P values, were retained and the remain-
ing ones were discarded. A nested 10-fold cross-validation
strategy was applied here [Liu et al., 2014; Thung et al.,
2014; Zhu et al., 2014], with the outer cross-validation to
estimate the classification performance and the inner
cross-validation to determine the optimal M. In brief, all
samples were randomly partitioned into 10 subsets.
Among them, nine subsets were selected for training and
the remaining one was utilized for testing. During the
training procedure, 210 inner 10-fold cross-validations,
with each one corresponding to a different M threshold
(1–210), were applied. Once we got the highest classifica-
tion accuracy in the inner cross-validation with the first M
features, we defined M as the optimal number of features.
This threshold (M-first) was adopted in the training set of
the outer cross-validation for the final classification. The
whole nested cross-validation procedure was repeated 10
times to avoid any bias introduced by random partitioning
in the cross-validation. Result reported was the average
accuracy of 10 repetitions of 10-fold cross-validation. A lin-
ear support vector machine (SVM) classifier was employed
to discriminate IGE-GTCS from healthy controls, which
was implemented using LIBLINEAR toolbox [Fan et al.,
2008], with a default value for the parameter C (i.e., C 5 1).
Finally, we obtained classification accuracy for each win-
dow length, and the optimal length corresponded to the
peak accuracy.

Permutation test was performed to determine whether
the peak classification accuracy exceeded chance level [Liu
et al., 2012b; Zeng et al., 2012]. To achieve this aim, the
class labels were permuted 10,000 times (randomly reallo-
cating patient and control labels to the training subjects)
and repeated for the entire classification processes. We
counted the number of times when the accuracy was
greater than the one obtained by the real labels. After
dividing by the total number of permutations, the P value
was obtained. The schematic overview for the whole clas-
sification framework is shown in Figure 2.

Clustering Analysis

We adopted k-means algorithm to cluster all dynamic
FNC matrices to assess the frequency and structure of
reoccurring FNC connectivity patterns. The L1 (Manhattan)
distance was used as a similarity measure in clustering, as
it was suggested by Aggarwal et al. [2001] that L1 was
more effective in measuring the similarity of high-
dimensional data. Moreover, a subsampling analysis was
conducted within each subject along the time dimension to

reduce the computational demands and to diminish
redundancy between windows. Briefly, guided by previ-
ous studies [Allen et al., 2014; Shen et al., 2016], we first
selected subject exemplars as those windows with local
maxima in FC variance. Second, k-means clustering was
performed to all exemplars and repeated 500 times with
random initial cluster centroid positions to escape local
minima. The optimal number of clusters was estimated
using the elbow criterion, calculating as the ratio of
within-cluster distance to between-cluster distance. A k of
6 was determined in a search window of k ranging from 2
to 20. Finally, the resulting cluster centroids were used as
starting points to cluster all data (91 subjects 3 186 win-
dows 5 16,926 matrices) into 6 clusters, and the cluster
medians were regarded as FC states.

State Analysis

We compared the subject medians of each state between
the two groups using a network-based statistic (NBS)
approach. This method assumes that the disrupted connec-
tions are interconnected into a subnetwork which is more
likely to indicate real alterations than isolated dysconnec-
tions, and has been shown to yield substantially greater
statistical power than generic methods to control the
family-wise error [Zalesky et al., 2010]. In brief, a primary
cluster-forming threshold (P< 0.01, uncorrected) was first
used to identify a set of supra-threshold connections, with-
in which any connected components and their size (num-
ber of connections) could then be determined. A corrected
P value was computed for each component using the
null distribution of maximal connected component size,
which was obtained using a nonparametric permutation
approach (10,000 permutations). For details of the NBS
method, see the study by Zalesky et al. [2010].

In addition, we performed an exploratory experiment in
which we calculated and compared temporal metrics
derived from each subject’s state vector [Allen et al., 2014].
Specifically, we computed four measures in each subject,
including: (1) mean dwell time in each state, measured as
the average number of consecutive windows in the same
state; (2) fraction of time spent in each state, measured as
the proportion of all windows in each state; (3) total num-
ber of transitions, measured as the number of state transi-
tions; and (4) mean state transition probability, measured
as the probability of transitioning from one state to anoth-
er state. Permutation tests were utilized to evaluate
between-group differences of these metrics [Liu et al.,
2016; Wang et al., 2013]. To this end, we first computed
the real between-group difference in the mean value of
each measure, and then randomly reassigned all the val-
ues of this measure into the two groups for 10,000 times
and recalculated the mean difference between these two
randomized groups. If less than 5% of the randomized
between-group differences were equal or greater than the
non-permutated value, the result was regarded significant.
Finally, we counted FC states at the group level as the
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number of subjects in each state, and compared them
using the proportion tests.

Correlation Analysis

Once significant between-group differences were found
in any dynamic measures, the relationships between these
measures and clinical variables (i.e., illness duration, onset
age, and seizure frequency) were assessed in the patient
group using Spearman’s rank correlation coefficient. The
threshold of P< 0.05 was considered to be significant for
these analyses.

Control Analysis

To further validate our findings, we performed the fol-
lowing four experiments.

Figure 3.

The 21 functionally relevant RSNs. The spatial maps of all sub-

jects of each RSN were entered into a random-effect one-sam-

ple t-test, and we used a threshold of |t|> 10 to select voxels of

a component to improve the representativeness of each RSN.

Based on the anatomical and functional properties of ICs, ICs

1-5, ICs 6-8, IC 9, ICs 10-11, ICs 12-20, and IC 21 were catego-

rized into the VN, SMN, AN, DMN, CCN, and CER, respective-

ly. The color bar represents t values. Abbreviations: IC,

independent component; L, left; R, right. [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE I. Characteristics of the patients with IGE-GTCS

and healthy controls

Variables
(Mean 6 SD) IGE-GTCS HC P value

Gender (M/F) 43 (28/15) 48 (29/19) 0.644
Age (years) 23.12 6 4.80 23.02 6 1.49 0.896
Handedness

(right/left)
43/0 48/0 –

Duration (years) 6.48 6 5.80 – –
Onset age (years) 16.77 6 5.03 – –
Frequency

(times/year)
26.04 6 77.96 – –

The P values were obtained by a two-sample t-test for age, and a
chi-square test for gender. Abbreviations: F, female; GTCS, gener-
alized tonic-clonic seizure; HC, healthy controls; IGE, idiopathic
generalized epilepsy; M, male; SD, standard deviation.
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First, we performed a nested leave-one-out cross-valida-
tion (LOOCV) on our data to estimate the classification
performance. Although LOOCV may introduce a high
degree of variance in testing on a single subject per fold,
this strategy was almost unbiased [Efron, 1983] and was
widely used in the previous epilepsy studies [Fang et al.,
2015; Focke et al., 2012; Zhang et al., 2012].

Second, the MVPA was used to classify the patients with
IGE-GTCS from healthy controls in the current study. This
technique takes into account classification features jointly,
and thus makes full use of the complementary information
among features. To validate this advantage, we calculated
the accuracy using the same nested 10-fold cross-validation
based on each of the 210 dynamic features and compared it
with MVPA. Specifically, the outer cross-validation was
applied to estimate the classification performance and the
inner cross-validation was adopted to determine the opti-
mal cut-off value for separating two groups.

Third, the static FNC was obtained by computing tem-
poral correlation of whole time courses (no sliding win-
dow) of each pair of the 21 RSNs. After Fisher’s r-to-z
transformation, the same classification procedures (includ-
ing feature selection and cross-validation) were performed

Figure 4.

Classification accuracy as a function of the window length

obtained by nested 10-fold (red line) and leave-one-out (green

line) cross-validation. Blue circles represent the peak accuracies.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 5.

The six cluster medians of all subjects are shown in (A) along

with the total number and the percentage of occurrences.

Group specific centroids of the states for patients with IGE-

GTCS and healthy controls together with the count of subjects

that had at least one window in each state are shown in (B) and

(C), respectively. The color bar represents z value of FNC.

Abbreviations: GTCS, generalized tonic-clonic seizure; HC,

healthy controls. [Color figure can be viewed at wileyonline

library.com]
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to investigate the diagnostic value of static FNC. More-
over, we compared the static FNC differences between the
two groups using the NBS method.

Finally, the temporal variabilities (i.e., classification fea-
tures) of connections between RSNs were compared
between the two groups. Outcomes were examined at two
commonly used statistical thresholds: corrected for multiple
comparisons using (1) a Bonferroni correction of P< 0.05,
and (2) a false discovery rate correction of P< 0.05.

RESULTS

Demographics and Clinical Characteristics

of the Participants

One patient was excluded because head motion exceeded
a translation of 2 mm or an angular rotation of 2 degrees,
and six patients and two healthy controls were discarded
due to the maximum displacement between two successive

images larger than 1 mm. The remaining subjects included
43 IGE-GTCS patients and 48 healthy controls. Chi-square
test was performed to evaluate the differences in gender,
and two-sample t-test was performed to evaluate the differ-
ences in age. The results revealed that the two groups were
matched for gender (28 males for the IGE-GTCS and 29
males for the control group; P 5 0.644), handedness (all the
subjects in two groups are right-handed) and age
(23.12 6 4.80 years for the IGE-GTCS and 23.02 6 1.49 years
for the healthy controls; P 5 0.896). In addition, the illness
duration, onset age and seizure frequency were 6.48 6 5.80
years, 16.77 6 5.03 years and 26.04 6 77.96 times per year of
the patients, respectively. The detailed demographic and
clinical data are shown in Table I.

Resting-State Networks

A total of 34 ICs were obtained by ICA and 21 ICs were
identified as RSNs (Fig. 3). Based on their anatomical and

Figure 6.

The strongest 5% connections of each state. Each rectangle on

the circumference of the big circle represents each IC, and the

gaps between the rectangles separate different functional subsys-

tems (i.e., VN, SMN, AN, DMN, CCN, and CER). The lines con-

necting the rectangle pairs represent the connections between

the corresponding two ICs. The red lines represent positive

connections and blue lines denote negative connections. Based

on the anatomical and functional properties of ICs, ICs 1-5, ICs

6-8, IC 9, ICs 10-11, ICs 12-20, and IC 21 were categorized

into the VN, SMN, AN, DMN, CCN, and CER, respectively.

Abbreviation: IC, independent component; VN, visual network;

SMN, sensorimotor network; AN, auditory network; DMN,

default mode network; CCN, cognitive control network; CER,

cerebellum. [Color figure can be viewed at wileyonlinelibrary.

com]
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functional properties, ICs 1-5, ICs 6-8, IC 9, ICs 10-11, ICs
12-20, and IC 21 were grouped into the visual network
(VN), sensorimotor network (SMN), auditory network
(AN), default mode network (DMN), cognitive control net-
work (CCN), and cerebellum (CER), respectively. This par-
cellation was in line with former studies [Allen et al., 2014;
Rashid et al., 2014]. The remaining 13 non-RSN ICs are
shown in Supporting Information Figure S1.

Classification Results

As shown in Figure 4, the accuracy of linear SVM classi-
fier could reach up to 77.91% (P< 0.001) with the window
size of 110s (55 TRs) via a nested 10-fold cross-validation.
In addition, the mean variance of accuracy over folds was
3.87 3 1024.

Clustering Analysis

As mentioned above, we utilized k-means approach to
cluster the dynamic FNC matrices from all subjects. Each
matrix in Figure 5A, which is arranged in the order of
emergence, represents cluster centroid and reflects the FC
state within the data. Differences among these matrices are
apparent in the sign and the magnitude of connectivity
between RSNs. Here, we delineated the distinctions of

different states in terms of strong connections, although
additional differences were also present. For better visuali-
zation, we kept the strongest 5% connections of each state
to clearly show the divergent pattern among FC states
(Fig. 6). Basically, the cerebral RSNs could be divided into
two categories, the low-level perceptual network (VN,
SMN, and AN) and the high-level cognitive network
(DMN and CCN). In state 1, the strong connections were
mainly found in cognitive network, particularly within
DMN/CCN and between these two networks. State 2
exhibited distributed strong connections between RSNs.
Although states 3–6 shared the similarity that strong corre-
lations mainly concentrated within perceptual networks
(particularly VN), they still possessed some unique con-
nection patterns. In state 3, almost all the connections
were within perceptual network. State 4 showed high cor-
relation within perceptual and cognitive networks. In
addition to the within-perceptual network connections,
state 5 had several connections between perceptual and
cognitive networks. State 6 was similar to state 4 except
for the connectivity between DMN and VN.

State Analysis

The group-specific medians for each state are shown in
Figure 5B,C. Of note, in consistent with previous dynamic

Figure 7.

Significant between-group FNC differences. Each rectangle on

the circumference of the big circle represents each IC, and the

gaps between the rectangles separate different functional subsys-

tems (i.e., VN, SMN, AN, DMN, CCN, and CER). The lines con-

necting the rectangle pairs represent the connections between

the corresponding two ICs. The red lines represent significantly

increased connections and the blue lines denote significantly

decreased connections in IGE-GTCS. Based on the anatomical

and functional properties of ICs, ICs 1-5, ICs 6-8, IC 9, ICs 10-

11, ICs 12-20, and IC 21 were categorized into the VN, SMN,

AN, DMN, CCN, and CER, respectively. Abbreviations: IC, inde-

pendent component. VN, visual network; SMN, sensorimotor

network; AN, auditory network; DMN, default mode network;

CCN, cognitive control network; CER, cerebellum. [Color figure

can be viewed at wileyonlinelibrary.com]
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FC studies [Allen et al., 2014; Damaraju et al., 2014; Shen
et al., 2016], not all subjects had the windows assigned to
each state (examples of state transition vectors are shown
in Supporting Information Fig. S2), and thus the number
of subject-specific matrices changed in different states (see
subject counts per state shown in Fig. 8C). By using the
NBS method, the group differences were found in state 3
(P 5 0.0345) and state 5 (P 5 0.0149), after family-wise error
correction for multiple comparison (Fig. 7). We found sig-
nificantly decreased connections between DMN and VN/
SMN, and both increased and decreased connections
between DMN and CCN in state 3. However, only signifi-
cantly increased connections were found between DMN
and VN, SMN and AN, between CCN and AN/VN in
state 5. There was no significant alteration of FNC in other
states.

We also found that, compared with healthy controls,
IGE-GTCS patients had significantly shorter mean dwell
time and fraction of time spent in state 4, while in state 5
they had significantly longer mean dwell time and fraction
of time spent than healthy controls (Fig. 8A,B). With
regard to the FC state counts for the two groups, the num-
ber of subject in state 1 in patient was significantly more
than that of control group (Fig. 8C). In addition, there was
significant difference in the number of transitions (Fig. 8E)

but unchanged mean transition probability (Fig. 8D)
between the two groups.

Correlation Analysis

We found that the connectivity between IC 1 and IC 11
in state 3 was negatively correlated with illness duration
(P 5 0.005), and the connectivity between IC 9 and IC 10 in
state 5 was positively correlated with seizure frequency
(P 5 0.045). Additionally, the mean dwell time in state 4
was negatively correlated with seizure frequency
(P 5 0.039) and the total number of transitions was nega-
tively correlated with illness duration (P 5 0.020).

Control Analysis

As shown in Figure 4, the highest classification accuracy
obtained by the nested LOOCV was 81.32% with the win-
dow length of 110s. In addition, based on single classifica-
tion feature, the highest accuracy was 67.02%. With regard
to static FNC, the linear SVM classifier obtained an aver-
age accuracy of 73.52%, and no significant difference was
observed using the NBS method. Paired t-tests revealed
that the accuracy obtained by dynamic features (77.91%)

Figure 8.

Between-group comparison in temporal metrics derived from state transition vector. The black

stars in bar plots denote statistically significant differences between the two groups. Error bars

represent the standard error. Abbreviations: GTCS, generalized tonic-clonic seizure; HC, healthy

controls. [Color figure can be viewed at wileyonlinelibrary.com]
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was significantly higher (P< 0.001) than that achieved by
single dynamic feature (67.02%) and static features
(73.52%). Furthermore, no significant difference was found
in temporal variabilities (i.e., classification features)
between the two groups.

DISCUSSION

This is the first study, to our knowledge, to investigate
dynamic FNC in a relatively large sample of IGE-GTCS.
Our work revealed the following findings: (1) state-specific
disrupted network interactions between RSNs were found
in the patients and the pronounced abnormalities were
mainly associated with DMN; (2) changed dynamic mea-
sures derived from state transition vector were observed
in the patients including mean dwell time, fraction of time
spent, number of subjects in some certain states and total
number of transitions across states; (3) significant correla-
tions between altered dynamic metrics and clinical charac-
teristics were seen in the patients; and (4) a significantly
high accuracy was achieved for IGE-GTCS classification by
the dynamic FNC. These results provided evidence of the
dynamic FNC alterations in the IGE-GTCS, which shed
new light on the pathophysiological mechanisms underly-
ing this disease.

In the past few years, investigating the functional inter-
actions between RSNs has become a powerful tool to
explore the human brain and holds great potential as a
possible diagnostic avenue for neuropsychiatric disease
[Jafri et al., 2008; Li et al., 2015; Wang et al., 2015; Zhang
et al., 2015]. Such investigations were commonly derived
from an fMRI experiment spanning from 5 to 10 minutes
and based on an implicit assumption that FC was static
over this period of time. However, this assumption was
challenged in studies focused on time frequency analysis
[Chang and Glover, 2010] and time-varying multivariate
connectivity patterns [Sakoglu et al., 2010]. Since then, sev-
eral dynamic FC studies have appeared to capture time-
varying properties of connectivity (for a comprehensive
review, see Hutchison et al., [2013a]). Two recent studies
demonstrated the relationship between spontaneous brain
dynamics and structural connectivity, providing the physi-
cal substrate of the temporal variability of FC [Liao et al.,
2015; Shen et al., 2015].

As shown in Figure 7, significant between-group FNC
differences were observed among several RSNs including
DMN, CCN, VN, SMN and AN in state 3/state 5. The
CCN primarily comprises fronto-parietal regions and is
involved in top-down modulation of attention and
working-memory tasks [Cole and Schneider, 2007]; the
VN, SMN, and AN are involved in sensory perception and
motor process which are responsible for information com-
munication with external environment. The goal-directed
decisions influence our perception and lead to correspond-
ing modulation of sensory cortical activity, which is actual-
ly the top-down control and allows us to flexibly navigate

multiple streams of sensory information [Gazzaley et al.,
2005a,b]. Therefore, the absence of functional connection
between CCN and perceptual network, together with the
impairment of perception observed in epilepsy in previous
studies [Grant, 2005; Luo et al., 2011; Zhang et al., 2009],
suggested the deficits of the high-order control over senso-
ry process in IGE-GTCS.

It was worth noting that the disrupted FNCs were main-
ly related to DMN, which was active during resting state
and inhibited in a wide range of cognitive tasks [Buckner
et al., 2008; Raichle, 2015; Raichle et al., 2001]. Convergent
evidence from functional brain imaging demonstrated
high spatial overlap of functional hubs with regions of the
DMN, indicating a critical role of the DMN in the overall
network structure [Liu et al., 2015c; Tomasi and Volkow,
2011; Van den Heuvel and Sporns, 2013]. Furthermore, the
DMN is one of the most important RSNs since it integrates
information from primary function and cognition networks
[Liao et al., 2010]. Recent literatures indicated that DMN
had made it possible to distinguish IGE-GTCS from
healthy controls, and both increased and decreased FC
were observed in the DMN in IGE [McGill et al., 2012;
Song et al., 2011; Wang et al., 2011]. The functional abnor-
mality in DMN may influence its information communica-
tion with other networks, resulting in impaired functional
integrations between the DMN and other RSNs. Intrigu-
ingly, the majority of pronounced changes in state 3 were
hyperconnectivities and related to anterior DMN. In con-
trast, all significant alterations in state 5 were hypoconnec-
tivities and associated with posterior DMN. A prior study
showed a dissociation pattern in DMN that increased
intra-network FC in posterior DMN was accompanied by

Figure 9.

Group mean static FNC map. The color bar represents z value

of FNC. Abbreviations: FNC, functional network connectivity.

[Color figure can be viewed at wileyonlinelibrary.com]
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decreased intra-network FC in anterior DMN [Wang et al.,
2011], which might provide a possible explanation of this
result. These findings together with the relationships
between altered FNC and clinical variables provided cru-
cial information for better understanding of IGE-GTCS.

Significantly different connections were found in
dynamic FNC but not in static FNC analysis. The reasons
for this might be twofold: first, the connectivity pattern of
state 4 was much similar to the pattern of static FNC (Fig.
9) based on the spatial correlation between static FNC
matrix and the cluster centroid of each state. Thus, no sig-
nificant FNC difference in state 4 might result in non-
remarkable changes in static FNC; and second, static anal-
ysis actually represents a measure of average connectivity
across different dynamic states by calculating FNC within
the whole scanning period. Hence, it may not be sensitive
enough to detect the between-group alteration. These two
reasons highlighted the necessity of conducting dynamic
FNC analysis, and our findings demonstrated that dynam-
ic FNC could yield important information which could not
be captured by static FNC. In this study, we also carried
out the exploratory analysis of examining dynamic metrics
derived from state vectors. Compared with healthy con-
trols, patients dwelled for shorter duration and spent less
time in state 4, but stayed longer and spent more time in
state 5. Moreover, the total number of state transitions in
patients was less than that of controls, and the number of
subjects who had state 1 was more than that of controls.
From the correlation analyses between these changed met-
rics and clinical variables, we found negative correlations
between the number of transitions and illness duration,
and between the mean dwell time in state 4 and seizure
frequency, suggesting that these dynamic measures could
be alternative indices for investigation on IGE-GTCS.

In the sliding window based dynamic FC analysis, win-
dow length is an open area of research and an important
parameter to capture the resting-state FC dynamics. The
window length should be short enough to permit the
detection of non-stationary fluctuations and long enough
to allow robust estimation of FC. In previous studies, the
window length typically ranged from 12.5 to 240 s [Chang
and Glover, 2010; Hutchison et al., 2013b; Kiviniemi et al.,
2011; Liao et al., 2014; Shakil et al., 2016; Shen et al., 2016].
Recently, Leonardi and Van De Ville [2015] demonstrated
that the minimum window length should be no less than
1/fmin, where fmin was the minimum frequency of the cor-
relating time courses. The window size less than 1/fmin

would introduce spurious fluctuations. In the current
study, a bandpass filter (0.01–0.08 Hz) was applied to min-
imize the effects of low-frequency drift and high-
frequency physiological noises. The MVPA was utilized to
determine the optimal and objective window size of 110 s,
which was more accurate than other size for discriminat-
ing IGE-GTCS from healthy controls. This disease-specific
window length (110 s) met the criterion of being greater
than 1/fmin (1/0.01 5 100 s), demonstrating the

reasonability of the used window size. In addition, classifi-
cation accuracies of 77.91% and 81.32% were obtained
using nested 10-fold cross-validation and LOOCV, respec-
tively. Both of these two results were obtained with the
same window length of 110 s (Fig. 4), indicating the
robustness of the used window length.

Although the classification result was not the main focus
of this study (to determine the optimal window length),
we compared the results with previous epileptic classifica-
tion researches based on FC. Zhang et al. [2012] con-
structed FC matrix based on automated anatomical
labeling template [Tzourio-Mazoyer et al., 2002] in mixed
epileptic patients (including focal, generalized, and tempo-
ral lobe epilepsy), and achieved a cross-validated classifi-
cation accuracy of 83.9%. Su et al. [2015] used predefined
160 regions of interest to create FC matrix in mesial tem-
poral lobe epilepsy and obtained an accuracy above 90%.
However, both of them utilized LOOCV to estimate the
classification performance, which had a high variance in
prediction error [Kohavi, 1995]. Moreover, they did not
adopt a nested manner in cross-validation but directly
constructed a model on the training data and tested on the
test data in each cross-validation fold. Such procedures
resulted in increased optimism because models were
selected after peeking at the test results [Gabrieli et al.,
2015]. To avoid this problem, one can choose models from
cross-validation on the training data. In the present study,
a nested cross-validation strategy was employed and a rel-
atively high accuracy was obtained, providing evidence
that IGE-GTCS could be classified from healthy controls at
the individual level.

Compared with univariate analysis, MVPA considers
the features jointly and makes full use of complementary
information among features [Li et al., 2014a; Liu et al.,
2012a; Shi et al., 2016; Wang et al., 2016a; Zeng et al.,
2014]. Moreover, MVPA is sensitive to the fine-grained
spatial patterns and subtle differences that would be unde-
tectable using univariate method which focuses on gross
differences at group level. In this work, we performed
group comparison on classification features (temporal vari-
abilities), but no significant difference was found after
Bonferroni or false discovery rate correction, demonstrat-
ing that MVPA could still provide above chance-level clas-
sification even in the range of statistically non-significant
univariate findings. We also acquired classification accura-
cy based on each of the 210 features and the highest accu-
racy was 67.02%. Furthermore, to compare the
classification results between dynamic and static FNCs,
the whole time courses of all 21 RSNs were used to com-
pute temporal correlations. Classification accuracy was
73.52% when using static FNC features. These accuracies
were significantly lower than our result (77.91%), demon-
strating the superiority of dynamic FNC analysis in IGE-
GTCS.

Several limitations of this study should be noted. The
first is the fact that most IGE-GTCS patients are medicated.
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Thus, our findings might be confounded by the use of
antiepileptic drugs, which can affect the normal neuronal
function and produce cognitive impairment [Loring and
Meador, 2004]. Future studies need to be conducted to
clarify this effect of antiepileptic drugs on dynamic FNC.
Second, the fMRI data were acquired without simulta-
neous EEG. It is challenging to acquire fMRI of acceptable
quality during the ictal state because of body movements.
Therefore, the potential effects on dynamic FNC of interic-
tal epileptiform activity could not be evaluated. Third,
head motion has a confounding effect on resting-state FC.
To alleviate this influence, we performed a series of proce-
dures such as the use of motion regressors in the models,
motion-related data exclusion criteria, between-group com-
parison of head motion profiles, and outlier detection
strategy. However, the head motion effect may not be fully
ruled out. Fourth, we did not use MVPA to explore the
between-group difference in the state analysis because the
changing number of subject-specific matrices in each state
would lead to different number of classification features in
each subject. In the future, it would be interesting to
develop new MVPA methods to conduct such analysis.
Fifth, we did not evaluate the influence of the temporal
dependence of overlapping windows on MVPA which
would be tested in separate studies in the future. Sixth,
despite the fact that between-group differences were found
in temporal metrics, the neurobiological meaning behind
these alterations is not clear yet and should be elucidated
in future studies. Finally, although the cross-validation
approach was employed to evaluate the classification per-
formance, independent dataset is needed to confirm our
results in the future.

CONCLUSION

In summary, this study represented the first attempt to
examine dynamic FNC among whole-brain RSNs in IGE-
GTCS. The main findings were that the aberrant FNC pat-
terns were state-dependent, and the altered connectivity
was mostly concentrated in the DMN. In addition, the
changes of dynamic metrics derived from state transition
vector were also observed. Some of these alterations were
found to be correlated with clinical variables, which may
ultimately contribute to the identification of neuroimaging
based biomarkers and the potential aid in early interven-
tion in IGE-GTCS. Overall, these findings provided a novel
perspective on the pathophysiology mechanisms of IGE-
GTCS, and implicated new directions for future research
by means of dynamic FNC to investigate other types of
epilepsy.
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